INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

A New Approach for Extremely Decentralized Data
Accountability for Data Sharing in Cloud

! B.Lakshmi Tirapatamma, %y.Sankararao

'Final M .Tech Student, Asst Professor

L2 Dept of Computer Science and Engineering

12 St.mary’s group of institutions —Guntur

ABSTRACT: Cloud computing is a technology, which uses internet and remote servers to stored data and application.

Cloud computing provides on demand services. Multiple users want to do business of their data using cloud but they get

fear to losing their data. While data owner will store his/her data on cloud , he must get confirmation that his/her data is

safe on cloud. To solve above problem in this paper we provide effective mechanism to track usage of data using

accountability. Accountability is checking of authorization policies and it is important for transparent data access. We

provide automatic logging mechanisms using JAR programming which improves security and privacy of data in cloud.

Using this mechanism data owner may know his/her data is handled as per his requirement or service level agreement.

Keywords: Cloud Computing, SaaS, DaaS, PaaS, IaaS.

LINTRODUCTION
Cloud Computing

It is the use of computing resources (hardware and
software) which are available in a remote location and
accessible over a network (typically the Internet). The
name comes from the common use of a cloud-shaped
symbol as an abstraction for the complex infrastructure it
contains in system diagrams. Cloud computing entrusts
remote services with a user's data, software and
computation.

Cloud storage

An online network storage where data is stored
and accessible to multiple clients. Cloud storage is
generally deployed in the following configurations:
public cloud, private cloud, community cloud, or some
combination of the three also known as hybrid cloud.

Cloud Services
Software as a service (SaaS)

The software-as-a-service (SaaS) service-model
involves the cloud provider installing and maintaining
software in the cloud and users running the software
from their cloud clients over the Internet (or Intranet).

The users' client machines require no installation of any
application-specific software - cloud applications run on
the server (in the cloud). SaaS is scalable, and system
administration may load the applications on several
servers. In the past, each customer would purchase and
load their own copy of the application to each of their
own servers, but with SaaS the customer can access the
application without installing the software locally. SaaS
typically involves a monthly or annual fee.

Development as a service (DaaS)

Development as a service is web based,
community shared development tools. This is the
equivalent to locally installed development tools in the
traditional (non-cloud computing) delivery of
development tools.

Platform as a service (PaaS)

It is cloud computing service which provides
the users with application platforms and databases as a
service. This is equivalent to middleware in the
traditional (non-cloud computing) delivery of application
platforms and databases.

Infrastructure as a service (IaaS)

It is taking the physical hardware and going
completely virtual (e.g. all servers, networks, storage,
and system management all existing in the cloud). This
is the equivalent to infrastructure and hardware in the
traditional (non-cloud computing) method running in the

36 | UDCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

cloud. In other words, businesses pay a fee (monthly or
annually) to run virtual servers, networks, storage from
the cloud. This will mitigate the need for a data center,
heating, cooling, and maintaining hardware at the local
level.

Cloud Accounting

For many companies, clouds are becoming an
interesting alternative to a dedicated IT infrastructure.
However, cloud computing also carries certain risks for
both the customer and the cloud provider. The customer
places his computation and data on machines he cannot
directly control; the provider agrees to run a service
whose details he does not know. If something goes
wrong - for example, data leaks to a competitor, or the
computation returns incorrect results - it can be difficult
for customer and provider to determine which of them
has caused the problem, and, in the absence of solid
evidence, it is nearly impossible for them to hold each
other responsible for the problem if a dispute arises.

In this paper, we propose that the cloud should
be made accountable to both the customer and the
provider. Both parties should be able to check whether
the cloud is running the service as agreed. If a problem
appears, they should be able to determine which of them
is responsible, and to prove the presence of the problem
to a third party, such as an arbitrator or a judge. We
outline the technical requirements for an accountable
cloud, and we describe several challenges that are not yet
met by current accountability techniques

II ACCOUNTABILITY

Accountability is a concept to make the system
accountable and trustworthy by binding each activity to
the identity of its actor [5]. Such binding should be
achieved under the circumstance that all actors within
the system are semi-trusted. That is, each identified actor
may lie according to their own interest. Therefore the
bindings must be supported by provable or non-
disputable evidence.

Domain A
T
USt(-.rt| Domain B

Domain A

—

() Start |

Log Evidence
| Incorporate
Accoantability

|
|
, |
g |
\ Activity || * | | Activity
g |
! |
|
|
L

| :

|I| Log Evidence |

I

OEnd |
OFEnd |

Transformed Process

Ordinary Process

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

Fig 1: Example of incorporating accountability into process

In our approach, accountability can be
incorporated into activity based process by requiring the
actor (conductor) of the process to log non-disputable
evidence about the activities in a separate domain from
the domain of its own. Fig. 2 shows an example of such
incorporation. In the example, domain A is required to
perform logging operations before and after conducting
the activity in its process. The evidence needs to be
logged should contain enough information to describe
the conducting activity. In the simple case in our
example, intuitive enough, the evidence should include
the states of the factors concerning the start of the
activity (e.g. input variables) and the factors concerning
its completion (e.g. output value).

As aforementioned, the logged evidence needs to be
non-disputable so as to undeniably link the activity to its
actor. That is, if by the logger or any other entity, the
evidence can be proven to be associated with an activity
conducted by a domain, no other entities can prove
otherwise.

For Example, each of them has its own associated
public-private key pair issued by certificate authorities.
The logging procedure is illustrated in Fig. 3. First, the
logger (domain A) signs the evidence (E) by its private
key (Ka-) to create a digital signature of it (Sa). The
evidence and its signature are then logged at a separate
domain (domain B). When received, domain B creates a
receipt by signing domain A’s signature with domain B’s
private key (KB-). At last, the receipt (SB) is sent back to
the logger (domain A) in the reply. Through this
procedure, since the digital signature is un-forgeable, the
signature of the evidence (Sa) and the receipt (SB) enable
both domains to prove the factor that domain A has
logged this evidence at domain B. In another word, even
though neither domain trusts the other, both of them can
prove its own correctness with the signature it has kept.

1. Sign Evidence
Sa = Sign{Ka-,E}

3. Create Receipt
Sk = Sign{Kg-,54}

2. Log
1SaE}

Figure 3. Evidence logging procedure

I11. Phases of Cloud Accountability

37 | upcsT

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

We propose Cloud Accountability Life Cycle (CALC) as
the following seven phases

Policy Planning

In the beginning, CSPs have to decide what
information to log and which events to log on-the-fly. It
is not the focus of this paper to claim or provide an
exhaustive list of recommended data to be logged.
However, in our observation, there are generally four
important groups of data that must be logged: (1) Event
data — a sequence of activities and relevant information,
(2) Actor Data — the person or computer component (e.g.
worm) which trigger the event, (3) Timestamp Data — the
time and date the event took place, and (4) Location
Data — both virtual and physical (network, memory, etc)
server addresses at which the event took place.

Sense and Trace

The main aim of this phase is to act as a sensor
and to trigger logging whenever an expected
phenomenon occurs in the CSP’s cloud (in real time).
Accountability tools need to be able to track from the
lowest-level system read/write calls all the way to the
irregularities of high-level workflows hosted in virtual
machines in disparate physical servers and locations.
Also, there is a need to trace the routes of the network
packets within the cloud.

Logging

File-centric perspective logging is performed on
both virtual and physical layers in the cloud.
Considerations include the lifespan of the logs within the
cloud, the detail of data to be logged and the location of
storage of the logs.

Safe-keeping of Logs

After logging is done, we need to protect the integrity of
the logs prevent unauthorized access and ensure that they
are tamper-free. Encryption may be applied to protect
the logs. There should also be mechanisms to ensure
proper backing up of logs and prevent loss or corruption
of logs. Pseudonymisation of sensitive data within the
logs may in some cases be appropriate.

Reporting and Replaying

Reporting tools generate from logs file-centric
summaries and reports of the audit trails, access history
of files and the life cycle of files in the cloud. Suspected
irregularities are also flagged to the end-user. Reports
cover a large scope: virtual and physical server histories
within the cloud; from OS-level read/write operations of
sensitive data to high-level workflow audit trails.

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

Auditing

Logs and reports are checked and potential fraud-causing
loopholes highlighted. The checking can be performed
by auditors or stakeholders. If automated, the process of
auditing will become ‘enforcement’. Automated
enforcement is very feasible for the massive cloud
environment, enabling cloud system administrators and
end-users to detect irregularities more efficiently.

Optimizing and Rectifying

Problem areas and security loopholes in the cloud are
removed or rectified and control and governance of the
cloud processes are improved.

Cloud Accountability Abstraction Layers

We propose the following layers of accountability in a
cloud:

Workflow Laver

Data Lavyer

Svstem Laver

Fig 2 :Abstraction Layers of Accountability in Cloud Computing
System Layer

At the lowest level lie the system layer logs. The system
layer consists of logging within the following
components:

Operating System (OS)

OS system and event logs are the most common type of
logs associated with cloud computing at the moment.

File System

Even though the file system is technically part of the OS,
we explicitly include it as a major component in this
system layer. This is because, in order to know, trace and
record the exact file life cycle and history, we often have
to track system read/write calls to the file system. From
the system read/write calls, we can also extract the
virtual and physical memory locations of the file,
providing more information for further forensic
investigations. The file-centric perspective [5] is also the
area which is less emphasized by current tools. Cloud
computing needs to have more emphasis on file-centric
logging, and the tracing and logging of a file’s life cycle
(i.e. creation, modification, duplication, destruction).

Network Logs

38 | uDCsT

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

As clouds are vast networks of physical and virtual
servers over a large number of locations, we need to also
monitor network logs within the cloud. Network logs are
logs specific to data being sent and received over the
network.

Data Layer

This layer contains the logging of data transactions and
the life cycle of data. The difference with the system
layer is that the system layer’s file system logs track the
life cycle of files, whereas the data layer actually tracks
the life cycle of data and the contents of files. The same
file can contain drastically different sets of data over
time. Some examples of the data layer are: (1) data
provenance, which records the so-called chains of
custody [9] (e.g. the history of owners and authorized
users) of the data found in the cloud and (2) database
logs [2] (i.e. histories of updates and actions executed by
a database management system to the database).

Workflow Layer

This layer primarily contains logs which reveal the
robustness or weaknesses of the governance and controls
of a workflow or business process [3] in an organization.
It correlates with an organization’s strategic and
management levels [2]. It is the key layer audited by
most IT auditors and internal audits. Examples include:
(1) audit trails from transactions in business process and
workflow management systems (2) audit trails from
information systems for the customer organizations (e.g.
ERP systems, Human Resource systems, etc) (3)
continuous auditing and monitoring tools.

Automated Logging Mechanism

We control the programmable capability of JARs to
conduct automated logging. A logger component is a
nested Java JAR file which stores a user’s data items and
corresponding log files.

The main responsibility of the outer JAR is to

handle authentication of entities which want to access
the data stored in the JAR file. In our context, the data
owners may not know the exact CSPs that are going to
handle the data. Hence, authentication is specified
according to the servers’ functionality (which we assume
to be known through a lookup service), rather than the
server’s URL or identity.
Example 1. Suppose that Alice’s photographs are
classified into three categories according to the locations
where the photos were taken. The three groups of photos
are stored in three inner JAR J1, J2, and J3, respectively,
associated with different access control policies. If some
entities are allowed to access only one group of the
photos, say J1, the outer JAR will just render the
corresponding inner JAR to the entity based on the
policy evaluation result.

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

Each inner JAR contains the encrypted data, class files to
facilitate retrieval of log files and display enclosed data
in a suitable format, and a log file for each encrypted
item. We support two options:

e Pure Log. Its main task is to record every access to
the data. The log files are used for pure auditing
purpose.

e Access Log. It has two functions: logging actions
and enforcing access control. In case an access
request is denied, the JAR will record the time when
the request is made. If the access request is granted,
the JAR will additionally record the access
information along with the duration for which the
access is allowed.

Dependability of Logs

We aim to prevent the following two types of attacks.
First, an attacker may try to evade the auditing
mechanism by storing the JARs remotely, corrupting the
JAR, or trying to prevent them from communicating
with the user. Second, the attacker may try to
compromise the JRE used to run the JAR files.

JARs Availability

To protect against attacks perpetrated on offline
JARs, the CIA includes a log harmonizer which has two
main responsibilities: to deal with copies of JARs and to
recover corrupted logs.

Each log harmonizer is in charge of copies of
logger components containing the same set of data items.
The harmonizer is implemented as a JAR file. It does not
contain the user’s data items being audited, but consists
of class files for both a server and a client processes to
allow it to communicate with its logger components. The
harmonizer stores error correction information sent from
its logger components, as well as the user’s IBE
decryption key, to decrypt the log records and handle
any duplicate records. Duplicate records result from
copies of the user’s data JARs. Since user’s data are
strongly coupled with the logger component in a data
JAR file, the logger will be copied together with the
user’s data. Consequently, the new copy of the logger
contains the old log records with respect to the usage of
data in the original data JAR file. Such old log records
are redundant and irrelevant to the new copy of the data.
To present the data owner an integrated view, the
harmonizer will merge log records from all copies of the
data JARs by eliminating redundancy.

For recovering purposes, logger components are
required to send error correction information to the
harmonizer after writing each log record. Therefore,
logger components always ping the harmonizer before
they grant any access right. If the harmonizer is not
reachable, the logger components will deny all access. In
this way, the harmonizer helps prevent attacks which

39 | upcsT

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

attempt to keep the data JARs offline for unnoticed
usage. If the attacker took the data JAR offline after the
harmonizer was pinged, the harmonizer still has the error
correction information about this access and will quickly
notice the missing record.

In case of corruption of JAR files, the
harmonizer will recover the logs with the aid of Reed-
Solomon error correction code [4]. Specifically, each
individual logging JAR, when created, contains a Reed-
Solomon-based encoder.

Auditing Mechanism

To allow users to be timely and accurately
informed about their data usage, our distributed logging
mechanism is complemented by an innovative auditing
mechanism. We support two complementary auditing
modes: 1) push mode; 2) pull mode.

Push mode: In this mode, the logs are periodically
pushed to the data owner (or auditor) by the harmonizer.
The push action will be triggered by either type of the
following two events: one is that the time elapses for a
certain period according to the temporal timer inserted as
part of the JAR file; the other is that the JAR file exceeds
the size stipulated by the content owner at the time of
creation. After the logs are sent to the data owner, the
log files will be dumped, so as to free the space for
future access logs. Along with the log files, the error
correcting information for those logs is also dumped.
Pull mode: This mode allows auditors to retrieve the
logs anytime when they want to check the recent access
to their own data. The pull message consists simply of an
FTP pull command, which can be issues from the
command line. For naive users, a wizard comprising a
batch file can be easily built. The request will be sent to
the harmonizer, and the user will be informed of the
data’s locations and obtain an integrated copy of the
authentic and sealed log file.

Algorithm for Push and pull Pure Log mode.

The pushing strategy is beneficial when there
are a large number of accesses to the data within a short
period of time. In this case, if the data are not pushed out
frequently enough, the log file may become very large,
which may increase cost of operations like copying data.
The pushing mode may be preferred by data owners who
are organizations and need to keep track of the data
usage consistently over time. For such data owners,
receiving the logs automatically can lighten the load of
the data analyzers. The maximum size at which logs are
pushed out is a parameter which can be easily configured
while creating the logger component. The pull strategy is
most needed when the data owner suspects some misuse
of his data; the pull mode allows him to monitor the
usage of his content immediately. A hybrid strategy can
actually be implemented to benefit of the consistent

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

information offered by pushing mode and the

convenience of the pull mode.

e The algorithm presents logging and synchronization
steps with the harmonizer in case of Pure Log.

e First, the algorithm checks whether the size of the
JAR has exceeded a stipulated size or the normal
time between two consecutive dumps has elapsed.

e The size and time threshold for a dump are specified
by the data owner at the time of creation of the JAR.

e It checks whether the data owner has requested a
dump of the log files. If none of these events has
occurred, it proceeds to encrypt the record and write
the error-correction information to the harmonizer.

e The communication with the harmonizer begins
with a simple handshake. If no response is received,
the log file records an error

e Once the handshake is completed, the
communication with the harmonizer proceeds, using
a TCP/IP protocol. If any of the aforementioned
events (i.e., there is request of the log file, or the
size or time exceeds the threshold) has occurred, the
JAR simply dumps the log files and resets all the
variables, to make space for new records.

e The Access Log checks whether the CSP accessing
the log satisfies all the conditions specified in the
policies pertaining to it. If the conditions are
satisfied, access is granted; otherwise, access is
denied. Irrespective of the access control outcome,
the attempted access to the data in the JAR file will
be logged.

For Example Ramu can specify that she wants to receive

the log files once every week, as it will allow his to

monitor the accesses to his files. Under this setting, once
every week the JAR files will communicate with the
harmonizer by pinging it. Once the ping is successful,
the file transfer begins. On receiving the files, the
harmonizer merges the logs and sends them to ramu.

Besides receiving log information once every week,

Ramu can also request the log file anytime when needed.

In this case, he just need to send his pull request to the

harmonizer which will then ping all the other JARs with

the “pull” variable to 1. Once the message from the
harmonizer is received, the JARs start transferring the
log files back to the harmonizer.

Conclusion

In the cloud computing ensure that the trust of cloud
from accountability. CIA framework accessible through
the JAR files and data also encrypted format by using the
Hierarchical identity based encryption. Similarly to the
case of the design and realization of an IBE scheme,
could not have a fully functional HIBE scheme. In
addition the JAR file can authenticate. So, that it allows
the powerful applications too many different mobile
devices, information gathering capabilities very high and
flexibility.

40 | UDCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

India. Her Research interest includes Cloud

REFERENCES
1. P. Ammann and S. Jajodia, “Distributed
Timestamp Generation in Planar Lattice
Networks,” ACM Trans. Computer Systems,

Computing,Computer Networks,and Data-warehousing.

Yenumula.Sankararao,
Assistant Professor in

vol. 11,pp. 205-225, Aug. 1993.

G. Ateniese, R. Burns, R. Curtmola, J. Herring,
L. Kissner, Z.Peterson, and D. Song, “Provable
Data Possession at Untrusted Stores,” Proc.

Computer Science And Engineering
Department,

St.Marys' Group Of Institutions
Guntur.

ACM Conf. Computer and Comm. Security, pp.
598- 609, 2007.

3. E. Barka and A. Lakas, “Integrating Usage
Control with SIP-Based Communications,” J.
Computer Systems, Networks, and Comm.,vol.
2008, pp. 1-8, 2008.

4. D. Boneh and M.K. Franklin, “Identity-Based
Encryption from the Weil Pairing,” Proc. Int’l
Cryptology Conf. Advances in Cryptology, pp.
213-229, 2001.

5. R. Bose and J. Frew, “Lineage Retrieval for
Scientific Data Processing: A Survey,” ACM
Computing Surveys, vol. 37, pp. 1- 28, Mar.
2005.

6. P.Buneman,A.Chapman, and J. Cheney,
“Provenance = Management in Curated
Databases,” Proc.ACM SIGMOD Int’l Conf.
Management of Data(SIGMOD ’06), pp. 539-
550, 2006.

7. B. Chun and A.C. Bavier, “Decentralized Trust
Management and Accountability in Federated
Systems,” Proc. Ann. Hawaii Int’l Conf.
System Sciences (HICSS), 2004.

8. OASIS Security Services Technical Committee,
“Security Assertion Markup Language (saml)
2.0,” http://www.oasis-open.org/committees/tc
home.php?wg abbrev=security, 2012.

9. R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini,
and 1. Staicu, “A Logic for Auditing
Accountability in Decentralized Systems,”
Proc. IFIP TCl1 WGIL.7 Workshop Formal
Aspects in Security and Trust, pp. 187-201,
2005.

10. B. Crispo and G. Ruffo, “Reasoning about
Accountability within Delegation,” Proc. Third
Int’l Conf. Information and Comm. Security
(ICICS), pp. 251-260, 2001.

B.LAKSHMI TIRAPATAMMA
was born in guntur, Andhra Pradesh,
India. She received MCA from ANU
Guntur,Andhra Pradesh,India.
Presently, she is pursuing M.Tech in
CS.E from Stmary’s group of
institutions, Guntur,Andhra Pradesh,

41 | uDCsT

