
IJDCST @November Issue- V-1, I-7, SW-13
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

49 www.ijdcst.com

Automatic Test Generation in Dynamic Web Applications

1 G.Navyasree, 2 P.Radha Krishna

1 Student, Nova College of Engineering & Technology, Jupudi, Vijayawada ANDHRAPRADESH.

 3 Associate Prof, HOD, Dept of CSE, Nova College of Engineering & Technology, Jupudi, Vijayawada, ANDHRAPRADESH.

Abstract: Developing of dynamic software applications in basic web oriented applications is the

main progression in present days. For developing these type of applications in two ways static

analysis and dynamic analysis. In this requirement we develop above developed applications for

generating test cases for finding faults in HTML and PHP applications in web oriented process.

For this development of the dynamic applications traditionally development tool was Ochiai. In

an auto test generation strategy, this approach is quite a boon to validate quality applications in

time. Combined with source mapping and using an extended domain for conditional and

function-call statements earlier an enhanced Ochiai, fault localization algorithms was proposed

that has the ability to handle web applications as well. Currently the variant Ochiai driven oracles

offers rigid support by offering static analysis services to only PHP applications. So we propose

to extend existing approach for supporting dynamic dataset presentation in static code analysis.

In this paper we propose to develop our proposed work for improving metamorphic relations for

dynamic web applications development present in the present software applications. Our

experimental results show efficient and dynamic test generation in dynamic web applications

development.

Index Terms: Apollo, Ochiai, Tarantula, dynamic Web applications, fault localization, fault

localization effectiveness, open-source PHP applications, path constraint, source mapping,

statistical analysis, test generation strategie, Metamorphic Relations.

I. INTRODUCTION

Web applications are typically written by

several combinational languages such as

JAVA SCRIPT, Client Side application

development like HTML. Furthermore

application development can be done by the

PHP application development features for

IJDCST @November Issue- V-1, I-7, SW-13
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

50 www.ijdcst.com

dynamic application development. The

failures in the HTML code may be difficult

to localize because HTML code is often

dynamically generated by server- side code.

For example in java and PHP really there is

no html file or line number of point

developer to detect the when and where the

failure occurs. We present Apollo, the first

fully automatic tool that efficiently finds and

localizes malformed HTML and execution

failures in web applications that execute

PHP code on the server side. In previous

work we created a tool called Apollo that

implements our technique for PHP.

Figure 1: Faults Localization in Dynamic

Applications.

By exercising the control flow in the

each execution, faults that are observed

during the execution are recorded. Until to

achieve the sufficient coverage of the

statements in the application the process is

repeated. But the time budget is exhausted

or sufficient number of faults has been

detected. In particular,

 1) It integrates an HTML validator to check

for failures that manifest themselves by the

generation of malformed HTML.

 2) It automatically simulates interactive

user input.

 3) It keeps track of the interactive session

state that is shared between multiple PHP

scripts.

The output of a Web application is

typically an HTML page that can be

displayed in a browser. To find faults that

are manifested as Web application crashes

or as malformed HTML. The application

may terminate some times, such as when a

Web application calls an undefined function

or reads a nonexistent file. However, our

previous work focused exclusively on

finding failures by identifying inputs that

cause an application to crash or produce

malformed HTML. We cannot address the

problem of the pinpointing the web

application failure. Hence, fixing the

underlying faults can be very difficult and

time consuming if no information is

IJDCST @November Issue- V-1, I-7, SW-13
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

51 www.ijdcst.com

available about where they are located. In

our scheme we addressing the problem of

determining where in the source code

changes need to be made in order to fix the

detected failures we commonly referred as

the fault localization. The fault-localization

algorithms explored in this paper attempt to

predict the location of a fault based on a

statistical analysis of the correlation between

passing and failing tests and the program

constructs executed by these tests. We

investigate variations on three popular

statistical fault-localization algorithms,

known as Tarantula, Ochiai, and Jaccard. A

suspiciousness rating is computed for each

executed statement, the percentages of

passing and failing tests that execute.

Programmers are encouraged to examine the

executed statements in order of decreasing

suspiciousness. In Ochiai tool we have to

implementing metamorphic relations present

in the dynamic application development.

II. RELATED WORK

2.1. PHP WEB APPLICATIONS

 PHP is a widely used scripting

language for implementing web

applications, in part due to its rich library

support for network interaction. A typical

PHP web application is a client/server

program in which data and control flow

interactively between a server, which runs

PHP scripts, and a client, which is a web

browser.

2.2. The PHP Scripting

Language

PHP is object oriented, in the sense

that it has classes, interfaces, and

dynamically dispatched methods. PHP also

has features of scripting languages, such as

dynamic typing. For example, the following

code fragment: $code =” $x = 3 ;”;$x= 7;

eval ($code); echo $x; prints the value 3.

The PHP code is delimited by <?php

and ?> tokens. The use of HTML in the

middle of PHP indicates that HTML is

generated as if it occurred in a print

statement. The require statements resemble

the C #include directive by causing the

inclusion of code from another source file.

The degree of flexibility is prized by PHP

developers for enabling rapid application

prototyping and development. The

flexibility can make the overall structure of

program hard to discern and render

programs prone to code-quality problems

that are difficult to localize.

IJDCST @November Issue- V-1, I-7, SW-13
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

52 www.ijdcst.com

2.3 Failures in PHP Programs

Generally we target on the two types of

the failures that may occur in the time of the

execution. Execution failures : These are

caused by missing included files and

uncaught exceptions. Less serious execution

failures, such as those caused by the use of

deprecated language constructs and incorrect

SQL queries, produce obtrusive error

messages but do not halt execution. HTML

failures. These involve situations in which

generated HTML code is not syntactically

correct, causing them to be rendered

incorrectly in certain browsers. This may not

only lead to portability problems.

2.4 Fault Localization

Early work on fault localization

relied on the use of program slicing. Lyle

and Weiser introduce program dicing, a

method for combining the information of

different program slices. Detecting failures

only demonstrates that a fault exists. The

next step is to find the location of the fault

that causes each failure. Some information

might help for the further use. For HTML

failures, HTML validators provide the

problematic locations in the HTML code.

Malformed HTML fragments can then be

correlated with the portions of the PHP

scripts that produced them. Comparing that

set of statements with the set of statements

executed by the failing runs can then

provide clues that can help localizing the

fault.

III. BACK GROUND WORK

In Apollo, we implemented a shadow

interpreter based on the Zend PHP

interpreter that simultaneously performs

concrete program execution using concrete

values. Apollo uses the choco constraint

solver to solve path constraints during the

combined concrete and symbolic test

generation. We implemented the following

extensions to the shadow Interpreter to

support fault localization:

 Statement Coverage :

Shadow interpreter records the set of

executed statements for each

execution by hooking into the

zend_execute and compile file

methods.

 Html validator :

HTML validators as an oracle for

checking HTML output: the Web

Design Group (WDG) HTML

validator and the CSE HTML

Validator V9.0.

IJDCST @November Issue- V-1, I-7, SW-13
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

53 www.ijdcst.com

 Source mapping:

The source-mapping correlates a

fault found in the HTML output with

the statements producing the

erroneous output fragments.

 Condition modeling :

Our shadow interpreter records the

results of all comparisons in the

executed PHP script for the

conditional modeling technique. For

each comparison it records a pair

consisting of the statement’s line

number and the relevant Boolean

result.

 Return-value modeling :

The shadow interpreter stores the

line number of the call and an

abstract model of the value. The

fault localization technique to

distinguish between null and non-

null values.

IV. FAULT LOCALIZATION

First we can see the basic fault

localization algorithms and there

implementations and there extensions. We

then present an alternative technique that is

based on source mapping and positional

information obtained from an oracle. The se

of an extended domain for conditional and

return-value expressions can help improve

the basic algorithm’s effectiveness.

3.1 Fault Localization Algorithms

Tarantula presents a fault-

localization technique that associates with

each statement a suspiciousness rating that

indicates the likelihood for that statement to

contribute to a failure. suspiciousness rating

 for a statement that occurs.

Star(l)=

where Passed is the number of passing

executions that execute statement l, Failed(l)

is the number of failing executions that

execute statement l, TotalP assed is the total

number of passing test cases, and Total

Failed is the total number of failing test

cases. The coefficients have been proposed

that can also be used to calculate

Suspiciousness ratings. The jacard

Coefficient has been used

Sjac(l) =

the Ochiai coefficient used in the molecular

biology domain:

IJDCST @November Issue- V-1, I-7, SW-13
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

54 www.ijdcst.com

Soch(l) =

After suspiciousness ratings have been

computed Ranks need not be unique: The

rank of each statement is the number of

statements with greater than or equal

suspiciousness:

In this we computed for each failing

test run a score that indicates the percentage

of the application’s executable statements

that the programmer need not examine in

order to find the fault. The score is now

computed by dividing the number of

statements in the set by the total number of

executed statements. Using this 13.9 percent

of the failing test runs were scored in the 99-

100 percent range.

V. PROPOSED APPROACH

We propose to extend the Ochiai

algorithm with Metamorphic testing

strategies to develop an integrated

framework that can offer support beyond

PHP such as Java/HTML/JavaScript. Instead

of employing any oracles for initiating

testing we propose to implement

metamorphic testing. Metamorphic testing is

a technique for the verification of software

output without a complete testing oracle.

Metamorphic testing observes that even if

the executions do not result in failures, they

still bear useful information. Follow-up test

cases should be constructed from the

original set of test cases with reference to

selected necessary properties of the

specified function. Such necessary

properties of the function are called

metamorphic relations. The subject program

is verified through metamorphic relations

(MR). It is unlikely for a single MR to detect

all possible faults. Therefore, four MRs that

are quite different from one another with a

view to detecting various faults were used

here. Finding good MRs requires

knowledge of the problem domain,

understanding of user requirements, as well

as some creativity. These MRs are

identified according to equivalence and

nonequivalence relations among regular

expressions. So this kind of testing

facilitates in an automated addressing of all

possible forms of failures in most web

technologies. Our work differs from most

previous research on fault localization in

that it does not assume the existence of a test

suite with passing and failing test cases. Our

previous work focused exclusively on

finding failures by identifying inputs that

IJDCST @November Issue- V-1, I-7, SW-13
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

55 www.ijdcst.com

cause an application to crash or produce

malformed HTML. This paper addresses the

problem of determining where in the source

code changes need to be made in order to fix

the detected failures. We introduce program

dicing, a method for combining the

information of different program slices. The

idea behind the schema is when a program

computes a correct value for variable x and

an incorrect value for variable y, the fault is

likely to be found in statements that are in

the slice w.r.t. y, but not in the slice w.r.t. x.

Variations. Use of set-union, set-

intersection, and nearest neighbor methods

for fault localization; these all work by

comparing execution traces of passing and

failing program runs.

VI. EXPERIMENTAL RESULTS

Our approach is based on the concept of

metamorphic testing (Chen et al., 1998),

summarized below. To facilitate that

approach, we must identify the relations that

the algorithms are expected to exhibit

between sets of inputs and sets of outputs.

6.1. Metamorphic Relations

We define the MRs that we anticipate

classification algorithms to exhibit, and

define them more formally as follows.

MR-0: Consistence with affine

transformation. The result should be the

same if we apply the same arbitrary affine

transformation function, f(x) = kx + b, (k 6=

0) to every value x to any subset of features

in the training data set S and the test case ts.

MR-1.1: Permutation of class labels.

Assume that we have a class-label

permutation function Perm() to perform one-

to-one mapping between a class label in the

set of labels L to another label in L. If the

source case result is li, applying the

permutation function to the set of

corresponding class labels C for the follow-

up case, the result of the follow-up case

should be Perm(li).

MR-1.2: Permutation of the attribute. If we

permute the m attributes of all the samples

and the test data, the result should remain

unchanged.

VII. CONCLUSION

Currently the variant Ochiai driven oracles

offers rigid support by offering static

analysis services to only PHP applications.

So we propose to extend existing approach

IJDCST @November Issue- V-1, I-7, SW-13
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

56 www.ijdcst.com

for supporting dynamic dataset presentation

in static code analysis. In this paper we

propose to develop our proposed work for

improving metamorphic relations for

dynamic web applications development

present in the present software applications.

Our experimental results show efficient and

dynamic test generation in dynamic web

applications development. As further

improvement of our proposed work can

efficiently accessing metamorphic relations

present in testing strategies.

VIII. REFERENCES

[1] Shay Artzi, Julian Dolby, Frank Tip, and

Marco Pistoia ,” Fault Localization for

Dynamic Web Applications” IEEE

Transactions on Ssoftware Engineering, vol.

38, no. 2, pp. 314-334, march/april 2012.

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D.

Dig, A. Paradkar, and M.D.Ernst, “Finding

Bugs in Dynamic Web Applications,” Proc.

Int’lSymp. Software Testing and Analysis,

pp. 261-272, 2008.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D.

Dig, A. Paradkar, and M.D.Ernst, “Finding

Bugs in Web Applications Using Dynamic

TestGeneration and Explicit State Model

Checking,” IEEE Trans. Software Eng., vol.

36, no. 4 pp. 474-494, July/Aug. 2010.

[4]F. Tip, “A Survey of Program Slicing

Techniques,” J. Programming Languages,

vol. 3, no. 3 pp. 121-189, 1995.

[5] X. Ren and B.G. Ryder, “Heuristic

Ranking of Java Program Edits for Fault

Localization,” Proc. ACM/SIGSOFT Int’l

Symp. Software Testing and Analysis, D.S.

Rosenblum and S.G. Elbaum, eds., pp. 239-

249, 2007.

[6] J. Lyle and M. Weiser, “Automatic Bug

Location by Program Slicing,” Proc. Second

Int’l Conf. Computers and Applications, pp.

877-883, 1987.

 [7] K. Sen, D. Marinov, and G. Agha,

“CUTE: A Concolic Unit Testing Engine for

C,” Proc. European Software Eng. Conf.

Held Jointly with 13th ACM SIGSOFT Int’l

Symp. Foundations of Software Eng., 2005.

[8] C. Cadar, V. Ganesh, P.M. Pawlowski,

D.L. Dill, and D.R. Engler, “EXE:

Automatically Generating Inputs of Death,”

Proc. Conf. Computer and Comm. Security,

2006.

IJDCST @November Issue- V-1, I-7, SW-13
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

57 www.ijdcst.com

[9] P. Godefroid, M.Y. Levin, and D.

Molnar, “Automated Whitebox Fuzz

Testing,” Proc. Symp. Network and

Distributed System Security, 2008

[10] J.A. Jones, M.J. Harrold, and J. Stasko,

“Visualization of Test Information to Assist

Fault Localization,” Proc. Int’l Conf.

Software Eng., pp. 467-477, 2002.

