
IJDCST @Sep-Oct, Issue- V-2, I-8, SW-25
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

114 www.ijdcst.com

Incorporation of Meta Cloud in CSPs to Solve Vendor

Lock-In Problems

Shaik Ismail Jabeebulla, S. Rama Krishna,

M-tech Student Scholar, Department of Computer Science Engineering, VRS & YRN College of Engineering & Technology,

Chirala;Prakasam (Dt); Andhra Pradesh, India.

Assistant Professor &H.O.D,Department of Computer Science Engineering,VRS & YRN College of Engineering &Technology, Chirala;

Prakasam (Dt), Andhra Pradesh, India.

Abstract — The cloud computing paradigm has

achieved widespread adoption in recent years. Its

success is due largely to customers’ ability to use

services on demand with a pay-as-you go pricing

model, which has proved convenient in many

respects. Low costs and high flexibility make

migrating to the cloud compelling. Despite its

obvious advantages, however, many companies

hesitate to “move to the cloud,” mainly because of

concerns related to service availability, data lock-in,

and legal uncertainties.1 Lock in is particularly

problematic. For one thing, even though public cloud

availability is generally high, outages still occur.2

Businesses locked into such a cloud are essentially at

a standstill until the cloud is back online. Moreover,

public cloud providers generally don’t guarantee

particular service level agreements (SLAs)3 — that

is, businesses locked into a cloud have no guarantees

that it will continue to provide the required quality of

service (QoS). Finally, most public cloud providers’

terms of service let that provider unilaterally change

pricing at any time. Hence, a business locked into a

cloud has no mid- or long term control over its own

IT costs. At the core of all these problems, we can

identify a need for businesses to permanently monitor

the cloud they’re using and be able to rapidly

“change horses” — that is, migrate to a different

cloud if they discover problems or if their estimates

predict future issues.

 We aim to restore the accidentally lost

passwords and file keys of the data user. The existing

system has the options to upload file by the data

owner, verification of data by a Trusted Third Party

and Cloud Service Provider and file retrieval by the

data user by appropriate and secure authentication

mechanisms but does not have an option to restore

the accidentally lost passwords or restore and resend

the file keys for file retrieval. In this enhancement,

we incorporate the ways the restore the lost

passwords and regenerate the file keys in case of

emergency situations by adding an additional level of

authentication. This helps to retrieve files in case of

emergencies.

Index Terms— Data storage, privacy-preserving,

public audit ability, cryptographic protocols, cloud

computing.

I. INTRODUCTION

The cloud computing paradigm has achieved

widespread adoption in recent years. Its success is

due largely to customers’ ability to use services on

demand with a pay-as-you go pricing model, which

has proved convenient in many respects. Low costs

and high flexibility make migrating to the cloud

compelling. Despite its obvious advantages, however,

many com-panies hesitate to “move to the cloud,”

mainly because of concerns related to service

availabil-ity, data lock-in, and legal uncertainties.1

Lock-in is particularly problematic. For one thing,

even though public cloud availability is gener-ally

high, outages still occur.2 Businesses locked into such

a cloud are essentially at a standstill until the cloud is

back online. Moreover, \public cloud providers

generally don’t guarantee\ par-ticular service level

agreements (SLAs)3 — that is, businesses locked into

a cloud have no guaran-tees that it will continue to

provide the required quality of service (QoS). Finally,

most public cloud providers’ terms of service let that

provider unilaterally change pricing at any time.

Hence, a business locked into a cloud has no mid- or

long-term control over its own IT costs.

At the core of all these problems, we can identify

a need for businesses to permanently monitor the

cloud they’re using and be able to rapidly “change

horses” — that is, migrate to a different cloud if they

IJDCST @Sep-Oct, Issue- V-2, I-8, SW-25
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

115 www.ijdcst.com

discover problems or if their estimates predict future

issues. However, migration is currently far from

trivial. Myriad cloud providers are flooding the

market with a confusing body of services, including

compute services such as the Amazon Elastic

Compute Cloud (EC2) and VMware vCloud, or key-

value stores, such as the Amazon Simple Storage

Service (S3). Some of these services are conceptually

comparable to each other, whereas others are vastly

different, but they’re all, ultimately, technically

incompatible and follow no standards but their own.

To further complicate the situation, many companies

not (only) build on public clouds for their cloud

computing needs, but combine public offerings with

their own private clouds, leading to so-called hybrid

cloud setups.4

Here, we introduce the concept of a meta cloud

that incorporates design time and runtime com-

ponents. This meta cloud would abstract away from

existing offerings’ technical incompat-ibilities, thus

mitigating vendor lock-in. It helps users find the right

set of cloud services for a particular use case and

supports an application’s initial deployment and

runtime migration.

II. RELATED WORK

CLOUD COMPUTING USE CASE

Let’s consider a Web-based sports portal for an

event such as the Olympic Games, which allows

users to place bets. An event this large requires an

enormously efficient and reliable infrastructure, and

the cloud computing paradigm provides the necessary

flexibility and elasticit y for such a scenario. It lets

service providers handle short-term usage spikes

without needing res-pective dedicated resources

available continuously. The problem, however, is that

once an application has been developed based on one

particular provider’s cloud services and using its

specific API, that application is bound to that

provider; deploying it on another cloud would usually

require completely redesigning and rewriting it. Such

vendor lock-in leads to strong dependence on the

cloud service operator. In the sports portal example,

in addition to the ability to scale applications up and

down by dynamically allocating and releasing

resources, we must consider additional aspects, such

as resource costs and regional communication

bandwidth and latency.

Let’s assume the sports betting portal application

is based on a load balancer that forwards HTTP

requests to numerous computing nodes hosting a

Web application that lets users submit a bet. Request

handlers place bet records in a message queue and

subsequently store them in a relational database.

Let’s further assume a service provider realizes this

scenario using only Amazon Web Services (AWS),

EC2 to host applications, Simple Queue Service

(SQS) as its cloud message queue, and the Relational

Database Service (RDS) as a database system.

Instead of being bound to one cloud operator,

however, the betting application should be hosted in

an optimal cloud environment.

CURRENT WEATHER IN THE (META) CLOUD

First, standardized programming APIs must

enable developers to create cloud-neutral applications

that aren’t hardwired to any single provider or cloud

service. Cloud provider abstraction libraries such as

libcloud (http:// libcloud.apache.org), fog (http://fog.

io), and jclouds (www.jclouds.org) provide unified

APIs for accessing different vendors’ cloud products.

Using these libraries, developers are relieved of

technological vendor lock-in because they can switch

cloud providers for their applications with relatively

low overhead.

As a second ingredient, the meta cloud uses

resource ­templates to define concrete features that

the application requires from the cloud. For instance,

an applica-tion must be able to specify that it requires

a given number of com-puting resources, Internet

access, and database storage. Some current tools and

initiatives — for example, Amazon’s­

CloudFormation (http://

aws.amazon.com/cloudformation/) or the upcoming

TOSCA specification (www.oasis-

open.org/committees/ tosca) — are working toward

similar goals and can be adapted to provide these

required features for the meta cloud.

In addition to resource templates, the automated

formation and pro-visioning of cloud applications

IJDCST @Sep-Oct, Issue- V-2, I-8, SW-25
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

116 www.ijdcst.com

also depends on sophisticated features to actually

deploy and install applica-tions automatically.

Predictable and controlled application deployment is

a central issue for cost-effective and efficient

deployments in the cloud, and even more so for the

meta cloud. Several application provisioning

solutions exist, enabling developers and

administrators to declaratively specify deployment

artifacts and dependencies to allow for repeatable and

managed resource provisioning. Notable examples

include Opscode Chef (w w w.opscode.com/chef/),

­Puppet (http://puppetlabs.com), and juju

(http://juju.ubuntu.com).

At runtime, an important aspect of the meta

cloud is application monitoring, which enables the

meta cloud to decide whether it’s nec-essary to

provision new instances of the application or migrate

parts of it. Various vendors provide tools for cloud

monitoring, ranging from system-level monitoring

(such as CPU and bandwith) to application-level

monitoring (Amazon’s CloudWatch;

http://aws.amazon.com/cloudwatch/) to SLA

monitoring (as with moni-tis;

http://portal.monitis.com/index. php/cloud-

monitoring). However, the meta cloud requires more

sophisticated monitoring techniques and, in

particular, approaches for making automated

provisioning decisions at runtime based on cur-rent

application users’ context and location.

INSIDE THE META CLOUD

To some extent, we can realize the meta

cloud based on a combination of existing tools and

concepts, part of which we just examined. Figure 1

depicts the meta cloud’s main components. We can

categorize these components based on whether

they’re important mainly for cloud software

engineers during development time or whether they

perform tasks during runtime. We illustrate their

interplay using the sports betting portal example.

META CLOUD API

The meta cloud API provides a unified

programming interface to abstract from the

differences among provider API implementations.

For customers, using t his API prevents t heir

application from being hard-wired to a specific cloud

service offering. The meta cloud API can build on

available cloud provider abstraction APIs, as

previously mentioned. Although these deal mostly

with key-value stores and compute services, in

principle, all services can be covered that are abstract

enough for more than one provider to offer and

whose specific APIs don’t differ too much,

conceptually.[6]

In the existing system, there are options to

upload file by the data owner, verification of data by

a Trusted Third Party and Cloud Service Provider

and file retrieval by the data user by appropriate and

secure authentication mechanisms but does not have

an option to restore the accidentally lost passwords or

restore and resend the file keys for file retrieval. The

enhancement for this project aims to restore the

accidentally lost passwords and file keys of the data

user. We incorporate the ways the restore the lost

passwords and regenerate the file keys in case of

emergency situations by adding an additional level of

authentication like asking the user to answer a secret

question at the time of registration. By appropriate

answering of the secret key, we can either block the

user or allow the user to download the files in case of

emergencies.

RESOURCE TEMPLATES
Developers describe the cloud ser-vices

necessary to run an application­ using resource

templates. They can specify service types with

additional­ properties, and a graph model expresses

the interrelation and functional dependencies between

services­. Developers create the meta cloud resource

templates using a simple domain-specific language

(DSL), letting them concisely specify required

resources. Resource defi-nitions are based on a

hierarchical composition model; thus developers can

create configurable and reusable template

components, which enable them and their teams to

share and reuse common resource templates­

in different projects. Using the DSL, developers

model their application components and their basic

IJDCST @Sep-Oct, Issue- V-2, I-8, SW-25
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

117 www.ijdcst.com

­runtime requirements, such as (provider-

independently normalized) CPU, memor y, and I/O

capacities, as well as dependencies and weighted

communication relations between these components.

The provision-ing strategy uses the weighted com-

ponent relations to determine the application’s

optimal deployment configuration. Moreover,

resource templates allow developers to define

constraints based on costs, compo-nent proximity,

and geographical distribution.

MIGRATION AND DEPLOYMENT RECIPES

Deployment recipes are an important ingredient

for automation in the meta cloud infrastructure. Such

recipes allow for controlled deployment of the

application, including installing packages, starting

required services, managing package and applica-tion

parameters, and establishing links between related

components. Automation­ tools such as Opscode

Chef provide an extensive set of functionalities that

are directly inte-grated into the meta cloud environ-

ment. Migration recipes go one step further and

describe how to migrate an application during

runtime — for example, migrate storage function-

ality from one service provider to another. Recipes

only describe ini-tial deployment and migration; the

provisioning strategy and the meta cloud proxy

execute the actual pro-cess using the aforementioned

auto-mation tools.

META CLOUD PROXY
The meta cloud provides proxy objects, which

are deployed with the application and run on the

provi-sioned cloud resources. They serve as

mediators between the application and the cloud

provider. These prox-ies expose the meta cloud API

to the application, transform application requests into

cloud-provider-specific requests, and forward them to

the respective cloud services. Proxies provide a way

to execute deployment and migration recipes

triggered by the meta cloud’s provisioning strat-egy.

Moreover, proxy objects send QoS statistics to the

resource moni-toring component running within the

meta cloud. The meta cloud obtains the data by

intercepting the applica-tion’s calls to the underlying

cloud services and measuring their pro-cessing time,

or by executing short benchmark programs.

III. EXISTING SYSTEM

Cloud providers are flooding the market with a

confusing body of services, including computer

services such as the Amazon Elastic Compute Cloud

(EC2) and VMware v Cloud, or key-value stores,

such as the Amazon Simple Storage Service (S3).

Some of these services are conceptually comparable

to each other, whereas others are vastly different,

but they’re all, ultimately, technically incompatible

and follow no standards but their own. To further

complicate the situation, many companies not (only)

build on public clouds for their cloud computing

needs, but combine public offerings with their own

private clouds, leading to so-called hybrid clouds.

IV. PROPOSED SYSTEM

Here, we introduce the concept of a meta cloud

that incorporates design time and runtime

components. This meta cloud would abstract away

from existing offerings’ technical incompatibilities,

thus mitigating vendor lock-in. It helps users find the

right set of cloud services for a particular use case

and supports an application’s initial deployment and

runtime migration.

We aim to restore the accidentally lost passwords

and file keys of the data user. We incorporate the

ways the restore the lost passwords and regenerate

the file keys in case of emergency situations by

adding an additional level of authentication like

asking the user to answer a secret question at the time

of registration. By appropriate answering of the

secret key, we can either block the user or allow the

user to download the files in case of emergencies.

V. CONCLUSION

The meta cloud can help mitigate vendor lock-in

and promises transparent use of cloud computing

services. Most of the basic technologies necessary to

realize the meta cloud already exist, yet lack

integration. Thus, integrating these state-of-the-art

tools promises a huge leap toward the meta cloud. To

avoid meta cloud lock-in, the community must drive

the ideas and create a truly open meta cloud with

IJDCST @Sep-Oct, Issue- V-2, I-8, SW-25
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

118 www.ijdcst.com

added value for all customers and broad support for

different providers and implementation technologies.

By implementing the above discussed, additional

level of authentication mechanism, we are able to

enable the user to download the files shared by the

owner in case of emergencies in a secure way.

REFERENCES

[1] M. Armbrust et al., “A View of Cloud

Computing,” Comm. ACM, vol. 53, no. 4, 2010,

pp. 50–58.

[2] B.P. Rimal, E. Choi, and I. Lumb, “A Tax-

onomy and Survey of Cloud Computing

Systems,” Proc. Int’l Conf. Networked Com-

puting and Advanced Information Man-agement,

IEEE CS Press, 2009, pp. 44–51.

[3] J. Skene, D.D. Lamanna, and W. Emmerich,

“Precise Service Level Agreements,”­

Proc. 26th Int’l Conf. Software­ Eng. (ICSE 04),

IEEE CS Press, 2004, pp. 179–188.

[4] Q. Zhang, L. Cheng, and R. Boutaba,

“Cloud Computing: State-of-the-Art and Research

Challenges,” J. Internet Services and

Applications, vol. 1, no. 1, 2010, pp. 7–18.

[5] M.D. Dikaiakos, A. Katsifodimos,

and G. Pallis, “Minersoft: Software Retrieval in

Grid and Cloud Computing Infrastruc-tures,”

ACM Trans. Internet Technology, vol. 12, no. 1,

2012, pp. 2:1–2:34.

[6] Winds of Change from Vendor Lock-In to

the Meta Cloud, IEEE INTERNET

COMPUTING VOL:17 NO:1 YEAR 2013

AUTHOR’S PROFILE

ISMAIL JABEEBULLA.

SHAIK received B.Tech

degree from Malineni

Lakshmaiaha Engineering &

Technology, Kanumalla,

Singarayakonda, Praksam,

Andhra Pradesh. And currently

pursuing M.Tech in Computer

Science Engineering at VRS &

YRN College of Engineering &Technology, Chirala,

Prakasam (Dt), Andhra Pradesh. His areas of interest

include Cloud computing.

Mr. S. Rama Krishna is

presently working as

Associate professor and

Head of CSE Department

in VRS & YRN College of

Engineering & Technology,

Chirala, AP, India. He

completed his B.Tech

degree in Computer

Science and Engineering

from JNTUH, Hyderabad. And then completed his

M.Tech. in Computer Science and Engineering as his

specialization from JNTUH, Hyderabad. Now he is

pursuing his Ph.D Degree in Computer Science and

Engineering from JNTUH, Hyderabad. His research

areas include Cloud Computing and Security. He has

a teaching experience of 10 years. He published

papers in 3 International Journals and 1 National

Conference.

