A Hybrid Model for Thyroid Disease Classification Using Evolutionary Multivariate Kernel SVM Prediction Method

K. Geetha, Capt. S. Santhosh Baboo
1Research Scholar(Ph.D), Periyar University, Department of Computer Science, Salem, India
2Associate Professor & Head, PG & Research Department Of Computer Science, DG Vaishnava College, Chennai, India

Abstract: Thyroid diseases are widespread worldwide. In India too, there is a significant problems caused due to thyroid diseases. Various research studies estimates that about 42 million people in India suffer from thyroid diseases. There are a number of possible thyroid diseases and disorders, including thyroiditis and thyroid cancer. This paper focuses on the classification of two of the most common thyroid disorders are hyperthyroidism and hypothyroidism among the public. The National Institutes of Health (NIH) states that about 1% of Americans suffer from Hyperthyroidism and about 5% suffer from Hypothyroidism. From the global perspective also the classification of thyroid plays a significant role. The conditions for the diagnosis of the disease are closely linked; they have several important differences that affect diagnosis and treatment. The data for this research work is collected from the UCI repository which undergoes pre-processing. The pre-processed data is multivariate in nature. Curse of Dimensionality is followed so that the available 21 attributes is optimized to 10 attributes using Hybrid Differential Evolution Kernel Based SVM algorithm. The subset of data is now supplied to Support Vector Machine (SVM) classifier algorithm where Radial Basis Function Kernal (RBF) is used. In order to stabilize the errors this iterative process takes 30 runs and the data is classified. The accuracy of classification is observed to be 67.97%. This result is average when compared to our previous work that used the Kernel based Naïve bayes classifier.

Keywords: Classification, Curse of Dimensionality, Differential Evolutionary algorithm, Multivariate Bayesian prediction, Radial Basis Function Kernel, Support Vector Machine, Thyroid disease, Wrapper model.

1. INTRODUCTION

According to a recent study published by the daily Times of India, one in ten adults in India suffers from hypothyroidism. This estimation is found on the basis of a survey conducted by Indian Thyroid Society. The study also depicts awareness for the thyroid disease and is ranked 9th when compared to other common diseases like asthma, cholesterol, depression, diabetes, heart problem and insomania. Medical practitioners say that the symptoms of thyroid are similar to other disorders. However, the survey revealed that only 50%, of the survey population are aware of thyroid disorder, know that there are diagnostic tests for detection of this disease [3].

Thyroid disorders damage the normal functioning of the thyroid gland which causes abnormal production of hormones leading to hyperthyroidism. The occurrence of hypothyroidism in the developed world is estimated to be about 4-5%. Hypothyroidism may cause high cholesterol levels, an increase in blood pressure, cardiovascular complications, decreased fertility, and depression if not properly treated.

Hence creating awareness among the public about the symptoms and types of this disease and its diagnosis plays a crucial importance of the hour. The main objective of this research work is to show the classification of more significant features from the available raw medical dataset which helps the physician to arrive at an accurate diagnosis of Thyroid among public.

This paper is organized in such a way that section 2 elaborates about thyroid disease types, symptoms and the ill effects. Section 3 deals with the background study conducted by various authors.
Section 4 focuses towards the proposed methodology of thyroid classification supported by the results and discussion in section 5.

2. OVERVIEW OF THYROID

The thyroid is an organ present in the human body and is considered to be a part of the endocrine or the hormone, system. It is located in the human neck below the Adam's apple. The main purpose of thyroid is to produce thyroid hormones. The produced hormones go through the bloodstream to all the other organs which help to control metabolism and growth development in both in adults and in children.

The thyroid gland functional data is more essential for the proper interpretation and diagnosis of the diseases associated with the gland. The principal role of the thyroid gland is to help regulation of the body's metabolism. Depending on the amount of secretion of this hormone may affect the human growth and development. When this hormone is produced very little thyroid hormone the type of disease is referred to as hypo-thyroidism. When this hormone is produced of too much it may lead to hyper-thyroidism [2].

2.1 THYROID AND HEALTH EFFECTS

Thyroid diseases are one of the most common endocrine disorders worldwide. India too, is no exception. It is estimated that about 42 million people in India suffer from thyroid diseases [4][8].

Thyroid diseases are different from other diseases in terms of their ease of diagnosis, accessibility of medical treatment, and the relative visibility [4]. The thyroid gland secretes hormones which controls a lot of things in the human body system like metabolize the food, use energy, sleep patterns, temperature preferences, body weight balance and a lot more [7]. Both an increase and decrease in thyroid hormone production can cause health problems.

3. LITERATURE REVIEW

There are many people who have studied various medical data and analyzed methods and models for preprocessing and classifying the data according to the need.

Ngan, Po Shun, et al (1999) introduced a system for discovering medical knowledge by learning Bayesian networks and rules. Evolutionary computation is used as the search algorithm. The Bayesian networks can provide an overall structure of the relationships among the attributes[13].

Ozyilmaz, Lale, and Tulay Yildirim (2002) proposed a system that includes Generalized Discriminant Analysis and Wavelet Support Vector Machine System (GDA_WSVM) method for diagnosis of thyroid diseases which includes three phases. They are feature extraction – feature reduction phase, classification phase, and test of GDA_WSVM for correct diagnosis of thyroid diseases phase, respectively [1]. The acceptable diagnosis performance of this GDA_WSVM expert system for diagnosis of thyroid diseases is estimated by using classification accuracy and confusion matrix methods, respectively. The classification accuracy of this expert system for diagnosis of thyroid diseases was obtained about 91.86% [1].

Ordonez et. al (2006) proposed a greedy algorithm to compute rule covers in order to summarize rules having the same consequent. The significance of association rules is evaluated using three metrics: support, confidence and lift [19].

Keleş, Ali, and Aytürk Keleş (2008) aims at diagnosing thyroid diseases with an expert system. In the proposed system, fuzzy rules by using neuro fuzzy method is incorporated [15].

Karaboga, D., & Basturk, B. (2008) compares the performance of ABC algorithm with that of Differential Evolution (DE), Particle Swarm Optimization (PSO) and Evolutionary Algorithm (EA) for multi-dimensional numeric problems [17].

Boryczka, Urszula (2009) focused on ant-based clustering algorithms. During the classification different metrics of dissimilarity like Euclidean, Cosine and Gower measures were used [18].

Kodaz, Halife, et al. (2009) proposed that Information gain based artificial immune recognition system (IG-AIRS) would be helpful in diagnosing thyroid function based on laboratory tests, and would open the way to various ill diagnoses support by using the recent clinical
examination data. The classification used is distance-based classification systems [12].

Dogantekin et. al. (2010) introduced the diagnosis of thyroid disease. The feature reduction is performed by using Principle Component Analysis (PCA) method. The classification is done using Least Square Support Vector Machine (LS-SVM) classifier. The performance evaluation of the proposed Automatic Diagnosis System Based on Thyroid Gland ADSTG method is estimated by using classification accuracy, k-fold cross-validation, and confusion matrix methods respectively [14].

Karaboga et. al (2011) used ABC is used for data clustering on benchmark problems and the performance of ABC algorithm is compared with Particle Swarm Optimization (PSO) algorithm and other nine classification techniques. ABC algorithm can be efficiently used for multivariate data clustering test data sets from the UCI Machine Learning Repository are used to demonstrate the results of the techniques [10].

Stegmayer et. al (2012) proposed a novel integrated computational intelligence approach for biological data mining that involves neural networks and evolutionary computation. They used self-organizing maps for the identification of coordinated patterns variations; a new training algorithm that can include a priori biological information to obtain more biological meaningful clusters and evolutionary algorithm for the inference of unknown metabolic pathways involving the selected cluster [11].

Yeh, Wei-Chang (2012) improved simplified swarm optimization (SSO) to mine a thyroid gland dataset collected from UCI databases. Close Interval Encoding (CIE) is added to efficiently represent the rule structure, and the Orthogonal Array Test (OAT) is added to powerfully prune rules to avoid over-fitting the training dataset [16].

Chen, Hui-Ling, et al (2012) proposed expert system, Fisher Score Particle Swarm Optimization Support Vector Machines (FS-PSO-SVM) has been rigorously evaluated against the thyroid disease dataset, which is commonly used among researchers who use machine learning methods for thyroid disease diagnosis [20].

4. METHODOLOGY

The framework of the proposed work is shown in the figure 1. The proposed work is based on the input from the UCI repository which involves 7200 multivariate type of records. Each record has 21 attributes. Out of the 21 attributes 15 are continuous data and 6 are discrete data.

The following steps are involved in the process of the proposed work.

1. The data taken from UCI repository undergoes preprocessing where missing value and not a number constraint are checked using masking method. If the missing value or Not a Number (NaN) values are present it is replaced by the mean value of the column.

2. The pre-processed data is fed into a hybrid algorithm termed as Differential Evolution (DE). This algorithm is used for creating subset of child from the parent records.

3. The subsets of data are applied to Kernel Based SVM algorithm to check the fitness. The fitness is measured by error stabilization.

4. After stabilization is achieved, the data is classified into 3 classes as

 a. Hypo Thyroid
 b. Hyper Thyroid
 c. Normal

4.1. DATA SET

The following table 1 shows the characteristics of Data set collected from UCI repository.

To ensure that the patterns derived are as accurate as possible, it is essential to improve the quality of the datasets in the pre-processing stage. Most real life data sets contain a certain amount of redundant data, which does not contribute significantly to the formation of important relationships. This redundancy not only increases the dimensionality of the data set and slows down the data mining process but also affects the subsequent classification performance [21].

Attribute selection is the process of removing the redundant attributes that are deemed irrelevant to
the data mining task. However, the presence of attributes that are not useful to classification might interfere with the relevant attributes to degrade classification performance. This is due to the noise that is contributed by these additional attributes and raises the level of difficult [21].

The objective of attribute selection is therefore to search for a worthy set of attributes that produce comparable classification results to the case when all the attributes are used. In addition, a smaller set of attributes also creates less complicated patterns, which are easily comprehensible, and even visualized, by humans [21].

It has to be noted that for a data set with n attributes, there are 2n–1 possible subsets. Therefore, an exhaustive search for an optimal set of attributes would be time-consuming and computationally expensive if n is large [21].

4.2. PRE-PROCESSING

The pre-processing step is necessary to resolve several types of problems including noisy data, redundant data, missing data values, etc. The high quality data will lead to high quality results and reduced costs for data mining. Missing data should be pre-processed so as to allow the whole data set to be processed by a required algorithm. Moreover, most of the existing algorithms are able to extract knowledge from data set that store discrete features. If the features are continuous, the algorithms can be integrated to create discrete attributes [22].

In the proposed work, the data taken from UCI repository has both continuous and discrete data which undergoes preprocessing. In this stage, the missing value and not a number constraint are checked using masking method. If the missing value or Not a Number (NaN) values are present it is replaced by the mean value of the column.

4.3. FEATURE SELECTION

Accurate diagnosis of diseases and subsequently, providing efficient treatment, forms an important part of valuable medical services given for patients in the health-care system. The unique characteristics of medical databases that pose challenges for data mining are the privacy-sensitive, heterogeneous, and voluminous data. These data may have valuable information which awaits extraction. The required knowledge is found to be encapsulated in/as various regularities and patterns that may not be evident in the raw data or the preprocessed data.

Extracting knowledge has proved to be priceless for future medical decision making. Feature selection is crucial for analyzing various dimensional bio-medical data. It is difficult for the biologists or doctors to examine the whole feature-space obtained through clinical laboratories at one time. All the computational algorithms recommend only few significant features for disease diagnosis. Then these recommended significant features may help doctors or experts to understand the biomedical mechanism better with a deeper knowledge about the cause of disease and provide the fastest diagnosis for recovering the infected patients as early as possible [24].

Feature selection methods tend to identify the features most relevant for classification and can be broadly categorized as either subset selection methods or ranking methods. The former type returns a subset of the original set of features which are considered to be the most important for classification [24][26].

Feature selection, is an effective in dimensionality reduction, by removing irrelevant and redundant data, increasing learning accuracy, and improving result comprehensibility [24][25]. Feature selection algorithms generally fall into two broad categories. They are:

A. The filter model
B. The wrapper model

A. Filter model
The filter model depends on general characteristics of the training data to select some features without involving any learning algorithm. The filter model assesses the relevance of features from data alone, independent of classifiers, using measures like distance, information, dependency (correlation), and consistency [24][25].

B. Wrapper model
The wrapper model needs one predetermined learning algorithm in feature selection and uses its performance to evaluate and determine which features are selected. For each of the generated new subset of features, the wrapper model is supposed
to learn the hypothesis of a classifier. It has a propensity to find features better suited to the predetermined learning algorithm resulting in superior learning performance, but it also tends to take more computation time and is more expensive than the filter model [24][25].

This research work uses the Wrapper model for feature selection. In wrapper methods, the algorithm that selects the features uses a classification algorithm for evaluation. Accordingly, wrapper methods are more precise but computationally more complex [27][28], and they also depend on the data selected for classifier development. Since these data guide the selection, they can lead to over-fitting [28][29]. A broad spectrum of various wrappers is used in today’s approaches.

4.3.1 Differential Evolution

Differential Evolution, or briefly DE [28][30] is a simple but effective search method for continuous optimization problems. According to Xinjie and Mitsuo (2010), DE represents a direction based search that maintains a vector population of candidate solutions. Like other usual Evolutionary Algorithms (EAs), it uses mutation, crossover and selection. The key part of DE, which differentiates it from standard EAs, is the mutation operator that perturbs the selected vector according to the scaled difference of the other two members of the population. The operation of DE is shown as pseudo-code in Algorithm 1.

\[
\begin{align*}
\text{Algorithm 1: Differential Evolution (DE)-pseudo-code} \\
1: & \text{Initialization and parameter setting} \\
2: & \text{while termination condition not met do} \\
3: & \text{for all population member—vector } v_i \text{ do} \\
4: & \text{create mutant vector } u_i \\
5: & \text{crossover } v_i \text{ and } u_i \text{ to create trial vector } t_i \\
6: & \text{end for} \\
7: & \text{for all population member—vector } v_i \text{ do} \\
8: & \text{if } f(t_i) \leq f(v_i) \text{ then} \\
9: & \text{end if} \\
10: & \text{end if} \\
11: & \text{end for} \\
12: & \text{end while}
\end{align*}
\]

The population of size NP contains vectors and each vector \(v_i \) of dimensionality D, consists of real-valued parameters, \(v_i = (v_{1i}, \ldots, v_{Di}) \in RD \), for \(i = 1, \ldots, NP \). Usually the population is initialized with vectors of values obtained randomly in the interval \([v_{lb}, v_{ub}]\), where \(v_{lb} \) and \(v_{ub} \) represent the lower and upper bound, respectively. In each generation, a new population is created through mutation and crossover. This new population is composed of the trial vectors \(t_i \). For each member of the current population, \(v_i \) (called the target vector), a new corresponding mutant vector \(u_i \) is formed using mutation. The mutation is conducted according to

\[u_i = vr1 + F \cdot (vr2 - vr3) \]

Here \(u_i \) is a mutant while \(vr1, vr2 \) and \(vr3 \) are population vectors selected randomly with the condition \(i \neq r1 \neq r2 \neq r3 \), and \(F \in (0, \infty) \) is the scale factor which represents a parameter of the algorithm. After the mutation, crossover occurs between the target vector \(v_i \) and the corresponding mutant \(u_i \) creating a trial vector \(t_i \). The crossover is done as follows:

\[
\begin{align*}
t_{ji} &= u_{ji} \quad \text{if } U[0, 1) \leq CR \text{ or } j = r_j , \\
v_{ji} &= \text{otherwise}
\end{align*}
\]

for \(j = 1, \ldots, D \). Here \(t_i \) is a trial vector obtained through crossover, \(U[0, 1) \) is a variable with its value randomly selected from the interval \([0, 1)\) with uniform distribution, \(r_j \) is a random variable with the value from the set \(\{1, \ldots, D\} \), while \(C \in (0, 1) \) is the crossover rate and represents a parameter of the algorithm. The described crossover is called the binomial crossover. Once the trial vector population has been created, vectors that transfer over to the next generation, i.e., which will constitute the new population, are selected. A given trial vector \(t_i \) replaces the corresponding target vector \(v_i \) if it is of equal or lesser cost, according to the given objective/fitness function. Due to its simplicity, DE is a very popular search method that has been successfully applied to various problems [28].

4.4 CLASSIFICATION

A classifier is a function \(f \) that maps input feature vectors \(x \in X \) to output class labels \(y \in \{1, \ldots, C\} \), where \(X \) is the feature space [33]. Computing
the kernel is easy, but computing the feature vector corresponding to the kernel is hard. The feature vector for even simple kernels can blow up in size, and for kernels like the RBF kernel \(k(x,y) = \exp(-||x-y||^2) \) the corresponding feature vector is infinite dimensional.

4.4.1 Kernel Trick

Many machine learning algorithms can be written to only use dot products, and then replace the dot products with kernels. By doing so, it is not necessary to use the feature vector at all. This means that it is possible to work with highly complex, efficient-to-compute, high performing kernels without writing down the huge and potentially infinite dimensional feature vector. Thus if not for the ability to use kernel functions directly, it is probable to stuck with relatively low dimensional, low-performance feature vectors. This “trick” is called the kernel trick [23].

The main idea behind the kernel trick is to map the data in to a Dierent space, called feature space, and to construct a linear classifier. In this space, non-linear classifiers in the original space can be constructed.

4.4.2 Kernel Function

\[
K(x, x') = \begin{cases}
 x \cdot x' & \text{Linear} \\
 (x \cdot x' + c)^d & \text{Polynomial} \\
 \exp(-\gamma ||x - x'||^2) & \text{RBF} \\
 \tanh(\gamma x \cdot x' + c) & \text{Sigmoid}
\end{cases}
\]

where \(K(x, x') = \langle x \rangle \cdot \langle x' \rangle \) that is, the kernel function, represents a dot product of input data points mapped into the higher dimensional feature space by transformation \(\phi \). Gamma is an adjustable parameter of certain kernel functions.

4.4.3 Radial Basis Function Kernel

In machine learning, the (Gaussian) radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification [23].

This is mainly because of their localized and finite responses across the entire range of the real \(x \)-axis. In the proposed work, data has high dimensional feature and it is non-linear. In order to make the data linear and reduce the dimensionality (Curse of Dimensionality), RBF kernel is used.

The RBF kernel on two samples \(x \) and \(x' \), represented as feature vectors in some input space, is defined as [24] which recognized as the squared Euclidean distance between the two feature vectors, is a free parameter. An equivalent, but simpler, definition involves a parameter:

Since the value of the RBF kernel decreases with distance and ranges between zero (in the limit) and one (when \(x = x' \)), it has a ready interpretation as a similarity measure [24]. The feature space of the kernel has an infinite number of dimensions; for, its expansion is [34]:

5. RESULTS AND DISCUSSION

The proposed model is developed using Matlab. The proposed work is designed to have two panels. One is the display panel and the other is analysis panel. Figure 1 and figure 2 displays the preprocessing and feature selection stage respectively.

Fig 1: Pre-processing

The classification is carried out based on radial basis kernel with SVM and the result is shown in figure 3.

Fig 2: Feature Selection
5.1 PERFORMANCE METRICS

The evaluation of the classification is essential. The performance metrics that are included in this proposed methodology is elaborated as follows and the output is shown in figure 3.

Many diagnostic tests are performed to distinguish between two groups that reflect the presence or absence of a relevant medical condition. Here the presence or absence of thyroid In this setup, let us assume a group of N patients with true status y1, ..., yN where yi = 1 represents presence and yi = 0 absence of the medical condition. The simplest approach to measure the performance of test T is to use the probability of misclassification. Such a single performance measure may be misleading, as there are two possibilities for a correct respectively, wrong decision of the diagnostic test that are the correct respectively, wrong prediction of the presence or absence of the medical condition [39].

Thus, a pair of criteria should be used to obtain the correct description of the performance. In general, the results of a test can be summarized by the so called confusion matrix shown in figure 9. The confusion matrix whose structure is presented in Table 2 includes the information on the prevalence (Pr) for the considered group.

\[
Pr = \frac{TP + FN}{TP + FN + TN + FP}
\]

<table>
<thead>
<tr>
<th>Test result</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>True situation</td>
<td>0</td>
<td>True negative (TN)</td>
</tr>
<tr>
<td>1</td>
<td>False negative (FN)</td>
<td>True positive (TP)</td>
</tr>
</tbody>
</table>

Table 2: Confusion Matrix

The percentage of correct positive tests for patients having the medical condition is called sensitivity (Se), whereas the percentage of correct negative tests for patients not having the medical condition is called specificity (Sp).

\[
Se = \frac{TP}{TP + FN} \quad Sp = \frac{TN}{TN + FP}
\]

The accuracy is expressed as a weighted sum of sensitivity and specificity.

\[
ACC = Pr \times Se + (1 - Pr) \times Sp
\]

The positive predictive value (PPV) is the probability that a patient with a positive test has the medical condition and the negative predictive value (NPV) is the probability that a patient with negative test does not have the medical condition.

\[
PPV = \frac{TP}{TP + FP} \quad NPV = \frac{TN}{TN + FN}
\]

During the development of a diagnostic test it is standard to use sensitivity and specificity for assessing the performance of the test. However, if there are two or more tests which have to be compared PLR and NLR should be chosen [36, 37]. It is important to note that both pairs of performance measures do not depend on the prevalence of the selected group which may be different from the intended-use population, whereas PPV and NPV depend on prevalence.

\[
PPV = \frac{Pr \times Se}{Pr \times Se + (1 - Pr) \times (1 - Sp)}
\]

\[
NPV = \frac{(1 - Pr) \times Sp}{(1 - Pr) \times Sp + Pr \times (1 - Se)}
\]

The information provided by PPV and NPV is of great importance for physicians and patients [38]. In the real-world applications where prevalence is often below 10% the diagnostic test must aim at substantially high values for sensitivity and specificity in order to be of utility otherwise PPV and NPV will be unacceptably low.

Fig 3: classification and Performance metrics

30 epochs (runs) are carried out for the input data. After stabilization is achieved, the data is classified into 3 classes shown in figure 3.

1. Hypo Thyroid
2. Hyper Thyroid
3. Normal

The accuracy of classification is achieved as 67.97% which is shown in figure 3 and too the result of these metrics. Sensitivity and Specificity are the most frequently used performance measures and are displayed using receiver operating characteristic (ROC) curves. For each threshold for the values of Tone obtains a sensitivity and specificity value. The plotted values leads to the ROC-curve of the diagnostic test $T[36]$. ROC for the proposed method is shown in figure 4.

ROC curves are often summarized by the area under the ROC curve (AUC) where an AUC of 0.5 means that the diagnostic test is not better than chance in predicting the categories, whereas values larger than 0.5 indicate a result better than chance. If the AUC is smaller than 0.5 the labels of the categories are misplace and should be switched leading to an AUC greater than 0.5. Having an AUC larger than 0.5 the diagnostic test is informative.

![Fig 4: Receiver Operating Characteristic (ROC)](image)

6. CONCLUSION

The objective of this research work is aimed to show the classes of thyroid from the available raw medical dataset helps the physician to arrive at an accurate diagnosis. The results show that the proposed Evolutionary Multivariate SVM Prediction classifier model achieves remarkable dimensionality reduction from among the 7200 medical datasets obtained from the UCI repository with 21 attributes (Continuous -15; Discrete - 6). 30 epochs (runs) are carried out for the data and after stabilization, the data are classified as Hyper, Hypo and Normal classes. The results are evaluated based on ten evaluation metrics and the accuracy of classification is 67.97%.

REFERENCES:

[34] Shashua, Amnon (2009). "Introduction to Machine Learning: Class Notes 67577".

