INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

Optimized Dynamic results using Hub Rank

KISHORE REDDY.THUMMALA1
ASSOCIATE PROFESSOR, RAMANANDHA ENGINEERING COLLEGE, NALGONDA, ANDHRA PRADESH

Abstract: In recent years retrieving information from the dynamic web using data mining is the main concept of
research work. For that reason our contributors develop many of techniques for retrieving information. Using Page
ranks and Object rank. But they are not support for dynamic data retrieving in web pages effectively so we have to
go for better technique for above problem. In this paper developing Hub Rank and Bin Rank based on Object Rank

for retrieving efficient results.

Keywords: Personalized Page rank, Object Rank, Bin Rank, Hub Rank.

I INTRODUCTION

In general, fully offline static ranking is not
feasible in this application domain, because the
match predicates can be diverse, even if limited to
words.

Search is maturing to take advantage of
taggers, annotators and extractors that associate
entities and relations (ER) with text. A very useful
search paradigm that has surfaced in many forms
recently is proximity search or spreading activation.
Spreading activation has been proposed for searching
in graphs for over a decade. Object Rank was among
the first large-scale implementations of proximity
search. In Object Rank, a personalized page rank
vector (PPV) is recomputed for each word in the
corpus vocabulary and stored in decreasing order of
node scores. Object- Rank supports a few monotone
score-combining functions for multi-word queries. A
multi-word query is executed by an efficient merge
of per-word PPVs. Balmin et al. demonstrated,
through a relevance feedback survey, that Object
Rank captured a sufficiently powerful class of
scoring/ranking functions. Precomputing a million
PPVs will take too long, even though Object Rank
uses some clever tricks to reduce PPV computation

time for “almost-acyclic” graphs. The public Object
Rank demo appears to maintain a disk cache of word
PPVs which are used as and when possible. Our goal
is to preprocess the ER graph must faster than
computing all word PPVs, and yet answer queries
much than a query-time Object Rank computation,

while consuming additional index space comparable
to a basic text index.

Object Rank uses a query term posting list
as a set of random walk starting points and conducts
the walk on the instance graph of the database. Bin
Rank query execution easily scales to large clusters
by distributing the subgraphs between the nodes of
the cluster we use HubRank a Query optimization
and index management technique especially for
graphs as an alternate to Object Rank. This reduces
the query time and has significant performance boost
over smaller graphs such as MSG.

In this paper, Bin Rank generates the
materialized sub graphs (MSG) by partitioning all the
terms in the corpus (information results) based on
their co-occurrence, and then executing Object Rank.
Object Rank extends Page Rank to perform keyword
search in databases.

I RELATED WORK

In this section, we examine hub-based and
Monte Carlo style methods that address the
scalability problem of PPR, and give an overview of
HubRank that integrates the two approaches to
improve the scalability of ObjectRank. Even though
these approaches enabled PPR to be executed on
large graphs, they either limit the degree of
personalization or deteriorate the quality of the top-k
result lists significantly.

Although this method guarantees fast user
response time, such precomputation is impractical as
it requires a huge amount of time and storage
especially when done on large graphs.

42 | uDCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com

Hub-based approaches materialize only a
selected subset of PPVs. Topic-sensitive Page Rank
suggests materialization of 16 PPVs of selected
topics and linearly combining them at query time.
The personalized Page Rank computation suggested
enables a finer-grained personalization by efficiently
materializing significantly more PPVs (e.g., 100 K).
and combining them using the hub decomposition
theorem and dynamic programming techniques.

To avoid the expensive iterative calculation
at runtime, one can naively pre computing and
materialize all the possible personalized Page
Rank vectors (PPVs). However, it is still not a fully
personalized Page Rank, because it can personalize
only on a preference set subsumed within a hub set
H.

It first selects a fixed number of hub nodes
by using a greedy hub selection algorithm that
utilizes a query workload in order to minimize the
query execution time. Given a set of hub nodes H, it
materializes the fingerprints of hub nodes in H. At
query time, it generates an active sub graph by
expanding the base set with its neighbors. Hub Rank
is a search system based on Object Rank that
improved the scalability of Object Rank by
combining the above two approaches. It stops
following a path when it Encounters a hub node
who’s PPV was materialized, or the distance from the
base set exceeds a fixed maximum length. Hub Rank
recursively approximates PPVs of all active nodes,
terminating with computation of PPV for the query
node itself. During this computation, the PPV
approximations are dynamically pruned in order to
keep them sparse. As stated, the dynamic pruning
takes a key role in outperforming Object Rank by a
noticeable margin. However, by limiting the
precision of hub vectors, Hub Rank may get
somewhat inaccurate search results.

Also, since it materialized only PPVs of H,
the efficiency of query processing and the quality of
query results are very sensitive to the size of H and
the hub selection scheme. Finally, Chakrabarti did
not show any large- scale experimental results to
verify the scalability of Hub Rank.

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

I ARCHITECTURE OVERVIEW

Then we give an overview of how a query is
executed; this naturally leads to hub selection and
query optimization issues. We first describe the
Object Rank scoring model.

A) Scoring in a Typed Word Graph:

A word node appears in W only if it matches
at least one entity; thus, no word A query is a set of
distinct words. To process the query, the ER graph is
augmented with one node for each query word,
connected to entity nodes where the word appears,
with special edges of type “word-to-entity”. Node is a
dead end. For the moment assume that no entity node
is a dead end.

Word rareness. Note that an “inverse document
frequency” (IDF) effect is built into the design.
Suppose the query has one rare and one frequent
word. Each gets half the Page rank of d, but the rare
word passes on the Page rank to a few entity
neighbors, each getting a large share. The frequent
word is connected to many entity nodes, each getting
a tiny share of its Page rank.

Learning f automatically. Assigning weights B(t) for
each edge type t might seem like an empirical art
from the above discussion. Indeed, Object Rank and
related systems use manually-tuned weights.

B) Query processing overview

Given a keyword query to execute, we
instantiate the query words as nodes in W and attach
each word node to the entity nodes where the word
appears. This gives us a setup time not too large
compared to IR engines. To answer the query, we
need the PPVs of the nodes corresponding to the
query words.

C) Query processing overview

At startup, our system preloads only the
entity nodes N (including the sink node s). This
would be impractical for Web-scale data, but is
reasonable for ER search applications. Only the
graph skeleton is loaded, costing us only about eight
bytes per node and edge. Entity graphs with hundreds
of millions of nodes and edges can be loaded into
regular workstations.

A total teleport mass of 1 first reaches the
word nodes, then diffuses out to N. Every node on
the way attenuates the total outflow of Pagerank by a
factor o < 1. Therefore, we expect the effect of
distant nodes on a word PPV to be decay rapidly. We

43 | uDcsT

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com

stop expanding the active subgraph at two kinds of
boundary nodes: blocker2 nodes B ¢ H who’s PPVs
have been precompiled and stored, and loser nodes
that are too far from the word nodes to assert much
influence on the word PPVs.
IV . WORKLOAD DRIVEN HUBSELECTION
Even if we were to make simplifying
assumptions (such as a fixed number of iterations),
the problem of picking the best subset reduces to hard
problems like dominating set or vertex cover. Even
quadratic or cubic-time algorithms on CiteSeer-scale
graphs may be impractical. Therefore we turn to
efficient and reasonable near-linear-time heuristics.
An indirect approach is to try to arrest active
graph expansions with blocker nodes as quickly and
effectively as possible. I.e., we want to pick a small
number of hub nodes that will block expansions from
a large number of frequent query word nodes. If a
node is a good hub, it will be reachable along short
paths from frequent query word nodes. This leads to
the greedy hub ordering approach shown in Figure 1;
it might be regarded as a fast if crude approximation
to the push step.

V ACTIVE SUBGRAPH EXPANSION

We wish to minimize the average time taken
to compute PPVs for all active nodes over a
representative query mix. PPV computation time is
likely to be directly related to the number of active
nodes, but the connection is not mathematically
predictable. When a keyword query is submitted, we
perform an expansion process similar to that in
Figure 1 to collect the active nodes A, except that we
also identify blocker nodes B € H whose FPs have
been indexed, and loser nodes which are so distant
from the originating node w that even the largest
element of PPV(l) is unlikely to influence PPV(w)

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

much.

L Initialize a score map score(u) for nodes we Wal N
2 for each query word w ¢ Wy do
J: attach node w to the preloaded entity graph

& let frontier={w} and prionitylw) = Pr(u)

b create an empty set of visited nodes

b: while frontier# 2 do

T remave some u from frontier and mark visited
& accumulate priomty(u) to score(u)

% [or cach visited neighbor v du

10 avcuulile]'J.'i:t'lllf'll"li-lt-]'l.l {-.'I:.r'. u) b soure{v)
1l: for each unvisted neighbor v do

12: let priority(v) — priority(u) a Cv,u)

1% add v to f."{'-JH'!.L'T'
14: sort word and entity nodes by decreasmg seore(u)

Fig 1: Greedy estimation of a measure of meritto including
each node into the hub set

VI PERFORMANCE

Effect of increasing cache size.

Average query time for Hub Rank drops
steeply as the FP cache size increases. For our tested,
the steep decrease happens right around the same size
as the Lucerne text index (Figure 2). But long before
the “knee” is reached, Hub Rank times are less than
1/12 th that of Object Rank.

2000 - -
< 1500 1
E
2
= 1000
ey
[
3
S 500
o] T T I T T I |
50 55 60 BS 70 75
FPGacheSize (MB)
Figure 2: Effect of cache size on HubRank query execution
time

Smoothing. Figure3 shows the beneficial effects of
workload smoothing on accuracy and speed.
Smoothing ensures that hubs are picked reasonably
close to word nodes that do not even appear in the
training query log. This improves both speed and
accuracy.

44 | DCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-III (April-May 2013) IS NOW AVAILABLE AT: www.ijdcst.com

F#Hwords— L 2 3 1

NofmoothTime [622 566 Vo6 004

SmoothTime 280 310 549 836

MoEfmoothPree 21 EBE EBR HS

SmoothPrec B 01 02 91

Figure 3: HubRank time and precision with andwithout
Smoothing

Comparison with BCA. BCA can be regarded as
a refined version. To maintain precise
guarantees, BCA starts with a residual of r(w) at
word node w, and progresses using push steps.
A push from node u transfers 1—a times its
current residual to its score, and the remaining o
fraction of its current residual to its out-neighbors’
residuals. BCA has to maintain a heap for the node
residuals.

2000 -
._ —&— HubRank
W 1500 \\"-‘. & BCA
E e
"6' e
£ 1000 4 \lﬂ
5 e
& 500 ’\0_\:
G T T T T

9000 10000 11000 12000 13000 14000

HubSe1Size
Figure 4: BCA has somewhat higher overhead than HubRank

v CONCLUSION

In this paper, we presented HubRank, a
workload-driven indexing and dynamic personalized
search system for ER graphs. We use HubRank a
Query optimization and index management technique
especially for graphs as an alternate to Object Rank.
This reduces the query time and has significant
performance boost over smaller graphs such as MSG.
At present HubRank scales to the size of DBLP and
CiteSeer, with several millions nodes and almost a
million words. We separated sample queries where
all words were blocked (empty active set, complete
word FPs loaded) vs. queries with nontrivial active
sets. We are working on graph clustering and
indexing techniques to reduce disk seeks while
expanding the active subgraph and loading blocker
PPVs, while the graph is largely on disk.

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

VIII REFERENCES

[1] S. Brin and L. Page, “The Anatomy of a Large-
Scale Hypertextual Web Search Engine,” Computer
Networks, vol. 30, nos. 1-7, pp. 107- 117, 1998.

[2] T.H. Haveliwala, “Topic-Sensitive PageRank,”
Proc. Int’l World Wide Web Conf. (WWW), 2002.
[3] G. Jeh and J. Widom, “Scaling Personalized Web
Search,” Proc. Int’l World Wide Web Conf. (WWW),
2003.

[4] D. Fogaras, B. Ra’cz, K. Csaloga'ny, and T.
Sarlo” s, “Towards Scaling Fully Personalized
PageRank: Algorithms, Lower Bounds, and
Experiments,” Internet Math., vol. 2, no. 3, pp. 333-
358, 2005.

[5]1 S. Abiteboul, M. Preda, and G. Cobena. Adaptive
on-line page importance computation. In WWW
Conference, pages 280-290, 2003.

[6] Apache Software Group. Jakarta Lucene text
search engine. GPL Library, 2002.

[7] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Authority- based keyword queries in databases using
ObjectRank. In VLDB, Toronto, 2004.

[8] P. Berkhin. Bookmark-coloring approach to
personalized pagerank computing. Internet
Mathematics, 3(1), Jan. 2007. Preprint.

[9] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma.
Object-level ranking: Bringing order to Web objects.
In WWW Conference, pages 567-574, 2005.

[10] S. Chakrabarti, “Dynamic Personalized
PageRank in Entity- Relation Graphs,” Proc. Int’l
World Wide Web Conf. (WWW), 2007.

About Author:

I am Tummala Kishore Reddy,
Completed M.Tech in Swami
Ramananda Tirtha Institute of

Science & Technology, Working
as associate Professor in Swami
Ramananda Tirtha Institute of
Science & Technology since five
years. My interest is research in
different programming languages and in datamining.

Jis (il

i istw AW

45 | JDCST

